Multi-queue CPU Process Prioritization using a Dynamic Quantum Time Algorithm Compared with Varying Time Quantum and Round-Robin Algorithms

نویسندگان

  • Maysoon A. Mohammed
  • Mazlina AbdulMajid
  • Balsam A. Mustafa
  • T. F. Hasan
  • P. B. Galvin
چکیده

In Round-Robin Scheduling, the quantum time is static and tasks are scheduled such that no process uses CPU time more than one slice time each cycle. If quantum time is too large, the response time of the processes will not be tolerated in an interactive environment. If quantum the time is too small, unnecessary frequent context switch may occur. Consequently, overheads result in fewer throughputs. In this study, we propose a priority multi queues algorithm with dynamic quantum time. The algorithm uses multi queues with different quantum times for the processes. The quantum times for the processes are depending on the priorities which in turn depending on the burst times of the processes. The proposed algorithm has been compared with varying time quantum algorithm which already exist to improve the original round robin algorithm. With proposed algorithm, the simple Round-Robin algorithm has been improved by about 35%. By controlling quantum time, we experience fewer context switches and shorter waiting and turnaround times, thereby obtaining higher throughput.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CPU Burst Processes Prioritization Using Priority Dynamic Quantum Time Algorithm: A Comparison with Varying Time Quantum and Round Robin Algorithms

In Round-Robin Scheduling, the time quantum is fixed and processes are scheduled such that no process uses CPU time more than one time quantum in one go. If time quantum is too large, the response time of the processes will not be tolerated in an interactive environment. If the time quantum is too small, unnecessary frequent context switch may occur. Consequently, overheads result in fewer thro...

متن کامل

Dynamic Quantum based Genetic Round Robin Algorithm

The performance of CPU is essentially depends on the scheduling algorithms. These algorithms provide a schedule for execution of processes waiting in ready queue. There are various scheduling algorithms; Round Robin is one of them. The performance of Round Robin algorithm is majorly depends on the quantum, generally which is static for all processes. There is not any standard way to decide the ...

متن کامل

Comparative performance analysis of multi dynamic time quantum Round Robin(MDTQRR) algorithm with arrival time

CPU being considered a primary computer resource, its scheduling is central to operating-system design. A thorough performance evaluation of various scheduling algorithms manifests that Round Robin Algorithm is considered as optimal in time shared environment because the static time is equally shared among the processes. We have proposed an efficient technique in the process scheduling algorith...

متن کامل

Number 7

In Round-Robin Scheduling, the quantum time is static and tasks are scheduled such that no process uses CPU time more than one slice time each cycle. If quantum time is too large, the response time of the processes will not be tolerated in an interactive environment. If quantum the time is too small, unnecessary frequent context switch may occur. Consequently, overheads result in fewer throughp...

متن کامل

A New Round Robin Based Scheduling Algorithm for Operating Systems: Dynamic Quantum Using the Mean Average

Round Robin, considered as the most widely adopted CPU scheduling algorithm, undergoes severe problems directly related to quantum size. If time quantum chosen is too large, the response time of the processes is considered too high. On the other hand, if this quantum is too small, it increases the overhead of the CPU. In this paper, we propose a new algorithm, called AN, based on a new approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016